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2-body classical scattering

 𝐼# =
$%!
$&

= '()$)
'(*+,- ) $-

= )
" #$% &

"'

• for hard spheres: 𝑈 𝑟 = 90 (𝑟 > 𝑑)
∞ (𝑟 ≤ 𝑑)

•  𝜒 𝐸, 𝑏 = 2 arccos )
$

 

•  𝐼# 𝐸, 𝜒 = $(

.

𝑟

𝑈 𝑟

𝑑

∞

0

𝑏

𝜒 𝑏

𝑑
0

𝜋



Recap from last session

3333

2-body classical scattering
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• for Lennard-Jones: 𝑈 𝑟 = 4𝜖 %
/

0'
− %

/

1

•  𝜒/  rainbow angle

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

0.5

0.0

0.5

1.0

r σ

U
ε

𝜖

𝜒 𝑏

𝑏small b

large b

𝜒𝜒/

lg 𝐼# 𝑠𝑖𝑛𝜒

𝜒/



Chapter 6
Unimolecular Reaction Dynamics
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• Unimolecular reaction:  A∗ → products 

• Why would we want to understand such a boring case?
• because it is simple enough to understand the mechanism on a 

deeper level!
• Asterisk ∗ : particle needs to be in an excited state (e.g., sufficiently 

high vibrational energy) to react – a reactive/activated state
• We can distinguish 3 different types of unimolecular reactions based 

on features of the respective potential energy surface 
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Unimolecular reaction:  A∗ → products 
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Unimolecular reaction:  A∗ → products
• How does a molecule acquire enough energy to overcome the barrier to 

react?
• Absorption of radiation from walls of reaction vessel (1919, Perrin)?
• … only found to be dominant mechanism for gas molecules at very low 

pressures, in absence of collisions:
• Then, predominant dissociation mechanism is  indeed absorption of a 

large number of IR photons originating from black-body radiation of walls 
of container
• But what about at moderate pressures?
• Dependence of reaction rate on pressure found (contradicts Perrin!)
• also, no dependence found on surface-to-volume-ration of container or 

presence of absorbers (contradicts Perrin!)
à instead this suggests that molecules are activated by collisions
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Lindemann proposed 1922 we need a collision partner M to 
activate/deactivate A	:  

A +M	
𝑘0
	→	 A∗+M

A∗ +M	
𝑘30
	→	 A + M

A∗	
𝑘'
	→	 products

• What does this scheme remind you of?

6.1 Lindemann-Hinshelwood Theory
of unimolecular reactions
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• Let’s apply the steady-state approximation to A∗	

• We make an additional approx. here:
• we assume every collision of A∗ +M fully deactivates A∗	to A
• so called: strong collision assumption

• How to calculate 𝑘30 for deactivation rate?
• could use gas-kinetic collision rate 𝑧56 we derived before
		 	 		𝑧AM = 𝜎AM 𝑢AM 	𝜌A𝜌M = 𝑘30 A M

• Now we just need to find also 𝑘0 and 𝑘', let’s do it!

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products
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• Let’s apply the steady-state approximation to A∗	

• We get for the overall rate 𝑅 of the reaction:

    𝑅 = 𝑘7,+ A = 𝑘' A∗ = 8)8( A M
8*) M 98(

 

Limiting cases:
A) Low pressure limit:
•  at low pressure: M → 0 and
    𝑘7,+ = 𝑘: = 𝑘0 M
• here, collision activation is rate-limiting step
•  𝑘7,+  grows linearly with pressure

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products
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• Let’s apply the steady-state approximation to A∗	

• We get for the overall rate 𝑅 of the reaction:

    𝑅 = 𝑘7,+ A = 𝑘' A∗ = 8)8( A M
8*) M 98(

 

Limiting cases:
B) High pressure limit:
•  at high pressure: M → ∞ and

    𝑘𝑢𝑛𝑖 = 𝑘∞ =
𝑘1𝑘2
𝑘−1

• now 𝑘7,+  becomes independent of pressure

• reversible first step, so here we have a pre-equilibrium A
∗

A = 8)
8*)

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products
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• A useful way of plotting is the log-log Lindemann plot

  using 𝑘7,+ =
8/

09 0/
0)M

 

•  𝑝)
(
∝ M )

(
= 8/

8)
 

   with 8123
8/

= 0
'

 

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products

cis/trans isomerization of 2-butene at 496 °C 
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• What’s the best model we got so far to calculate
    rate constants like 𝑘0 and 𝑘'?

• Reactive-hard-spheres model:

𝑘0 = 𝑘 𝑇 = 𝜎AM 𝑢AM 	𝑝	 𝑒3
@∗
84A

from gas-kinetic collision rate we got 𝜎AM 𝑢AM = k30

so with 𝑝 = 1	follows  𝑘0 = 𝑘30	𝑒
3 5∗

046

• But experimentally we find this underestimates the rates measured!!! Why?
àmolecules also have internal energy stored, e.g., vibrational, that can be 

used to drive the reaction, not just 𝐸8+,

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products
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Hinshelwood Theory
• accounts for internal energy that is stored in vibrational degrees of 

freedom, which should lead to a higher activation rate  𝑘0

• he derived in 1926:  𝑘0 =
8*)
*30 !

@7
84A

*30
𝑒3

57
046 

• 𝑠 : number of vibrational degrees of freedom
• How many are there for a given molecule?
•  3𝑁 − 6 (or 3𝑁 − 5, if molecule linear)
• What happens if 𝑠 is increased (e.g., bigger molecule, rest same)?
• More energy stored, so rate goes up

• but only holds under assumption of @7
84A

≫ 𝑠 (uses an approximation)

To get an idea of the activation energy and limit 
for which the approximation holds:
To break C-C bond in ethane: 𝐸& ≈ 400 kJ/mol
and 𝑘'𝑇 at r.t. ≈ 2.5 kJ/mol
à 𝑠 ≪ 160 here for the above Eq. to work
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Hinshelwood Theory

• Ratio 8)
8	*)

= A∗
A 	 is fraction of molecules exceeding activation energy 

𝐸: in thermal equilibrium
• Good approximation at high pressure M → ∞ where energized 

molecules in pre-equilibrium with ground-state ones
• We also assume it holds at low pressures for now, by making again a 

strong collision assumption (this time for energizing collisions)
• assumes no step-wise activation, but that one collision instantly 

excites/de-excited fully (drastic assumption at low pressure)

• Then	we	can	say:		 8)
8	*)

= A∗
A ≈ 5 @C@7

A898:;
How to calculate 
this fraction?
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• We assume everything is in equilibrium and therefore can use 
statistical thermodynamics (quasi-equilibrium, but close enough, at 
least for high pressures)
• Remember: we are right now historically before quantum-mechanics, 

so continuous rather than discrete energy levels (and not the QM 
partition function, but classical oscillator one needed)
• So now we look at classical analogues for what you learned before in 

QM for discrete energy states

• Sum of states 𝐺 𝐸  : # of levels with energies smaller than or equal to 𝐸 

• How did this look for the quantum-mechanical oscillator?
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Sum of states 𝐺 𝐸  : # of levels with energies smaller than or equal to 𝐸 
• How did this look for the quantum-mechanical oscillator?

• discrete energy levels 𝐸 = 𝑣 + 1
2
ℎ𝜈𝑖  

•  𝜈+  : eigenfrequency of oscillator

• Sum	of	states	classically:	𝐺 𝐸 = @
FG3

• Density of states (DoS) 𝑁 𝐸 	is number of
   levels per unit energy:

    𝑁 𝐸 = 𝑑𝐺 𝐸
𝑑𝐸

  which is simply

    𝑁 𝐸 = 1
ℎ𝜈𝑖

• Probability for such an oscillator to have energy between 𝐸 and 𝐸 + 𝑑𝐸 ?

𝐸

𝐺 𝐸

1
2
ℎ𝜈+

3
2
ℎ𝜈+

5
2
ℎ𝜈+

1

2
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Probability for such an oscillator to have energy between 𝐸 and 𝐸 + 𝑑𝐸
follows Boltzmann statistics and is thus:

•  𝑃 𝐸 𝑑𝐸 = M @ N
* 5
046$@

∫7
/M @ N

* 5
046$@

= 𝑒3
5

046𝑑𝐸	

partition function for one classical oscillator
• Now need to generalize to 3𝑁 − 6 (or s)
 oscillators, that have a total energy 𝐸

• For 1 oscillator, we had found 𝑁 𝐸 = 0
FG)

   and for the sum of states 𝐺 𝐸 = @)
FG)

 (i.e., the integral ∫0
𝐸 𝑑𝐸1
ℎ𝜈1

 )

• What is the sum of states for 𝑠 oscillators then?

𝐸

𝐺 𝐸

1
2
ℎ𝜈+

3
2
ℎ𝜈+

5
2
ℎ𝜈+

1

2
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• For 𝑠 oscillators of energies 𝐸𝑖  with ∑𝑖=1𝑠 𝐸𝑖 = 𝐸 we then find for the sum 
of states:

•  𝐺 𝐸 = ∫0
𝐸 𝑑𝐸1
ℎ𝜈1
	 ∫0

𝐸−𝐸1 𝑑𝐸2
ℎ𝜈2
	 … ∫0

𝐸−𝐸1−	…−𝐸𝑠−1 𝑑𝐸𝑠
ℎ𝜈𝑠

 

• as for more than one oscillator, those oscillators share the energy 
between them
• So, if the first oscillator has already energy 𝐸0, then the second one can 

only have at most 𝐸 − 𝐸0 , and so on
• We can rewrite this to

•  𝐺 𝐸 = 1
∏𝑖=1
𝑠 ℎ𝜈𝑖

∫0
𝐸 𝑑𝐸1 ∫0

𝐸−𝐸1 𝑑𝐸2…∫0
𝐸−𝐸1−	…−𝐸𝑠−1 𝑑𝐸𝑠

• which after some further steps becomes

     𝐺 𝐸 = 𝐸𝑠

𝑠! ∏𝑖=1
𝑠 ℎ𝜈𝑖
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• For 𝑠 oscillators of energies 𝐸𝑖  with ∑𝑖=1𝑠 𝐸𝑖 = 𝐸 we then find for the sum 
of states:

     𝐺 𝐸 = 𝐸𝑠

𝑠! ∏𝑖=1
𝑠 ℎ𝜈𝑖

• and for the DoS we then find:

     𝑁 𝐸 = 𝐸𝑠−1

(𝑠−1)! ∏𝑖=1
𝑠 ℎ𝜈𝑖

 (which is just the derivative)

• With this we can now calculate our probability following Boltzmann 
statistics, inserting our solution for 𝑁 𝐸 :

    𝑃 𝐸 𝑑𝐸 = 𝑁 𝐸 𝑒
− 𝐸
𝑘𝐵𝑇𝑑𝐸

∫0
∞ 𝑁 𝐸 𝑒

− 𝐸
𝑘𝐵𝑇𝑑𝐸

= 𝐸𝑠−1𝑒
− 𝐸
𝑘𝐵𝑇𝑑𝐸

∫0
∞ 𝐸𝑠−1𝑒

− 𝐸
𝑘𝐵𝑇𝑑𝐸

= 1
(𝑠−1)!

𝐸
𝑘𝐵𝑇

𝑠−1
𝑒−

𝐸
𝑘𝐵𝑇

𝑑𝐸
𝑘𝐵𝑇

 

    ∫0
∞ 𝑥𝑠−1𝑒−𝑥𝑑𝑥 = Γ 𝑠 = 𝑠 − 1 !
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Now we know the probability for a molecule with 𝑠 classical harmonic 
oscillations having a certain energy 𝐸:

    𝑃 𝐸 𝑑𝐸 = 1
(𝑠−1)!

𝐸
𝑘𝐵𝑇

𝑠−1
𝑒−

𝐸
𝑘𝐵𝑇

𝑑𝐸
𝑘𝐵𝑇

 

• Let’s plot this for different 𝑠 at room temperature (𝑠 = 1 case is easy):
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Probability for a molecule with 𝑠 classical harmonic oscillations having a 
certain energy 𝐸:

    𝑃 𝐸 𝑑𝐸 = 1
(𝑠−1)!

𝐸
𝑘𝐵𝑇

𝑠−1
𝑒−

𝐸
𝑘𝐵𝑇

𝑑𝐸
𝑘𝐵𝑇

 

• back to deriving 𝑘0 according to Hinshelwood:
• We derive 𝑘0	from fraction of molecules with energy exceeding activation 

energy 𝐸: through integration:
𝑘1
𝑘−1

= w
𝐸0

∞

𝑃 𝐸 𝑑𝐸 = w
𝐸0

∞
1

𝑠 − 1 !
𝐸
𝑘𝐵𝑇

𝑠−1

𝑒−
𝐸
𝑘𝐵𝑇

𝑑𝐸
𝑘𝐵𝑇

• How can we solve this integral?

• by transforming and substituting  𝑥 = @
84A
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𝑘1
𝑘−1

= w
𝐸0

∞

𝑃 𝐸 𝑑𝐸 = w
𝐸0

∞
1

𝑠 − 1 !
𝐸
𝑘𝐵𝑇

𝑠−1

𝑒−
𝐸
𝑘𝐵𝑇

𝑑𝐸
𝑘𝐵𝑇

• How can we solve this integral?

• by transforming and substituting  𝑥 = @
84A

 we get

𝑘0
𝑘30

=
1

𝑠 − 1 !
w

𝑥0=
𝐸0
𝑘𝐵𝑇

∞

𝑥 𝑠−1𝑒−𝑥𝑑𝑥

• What does this function remind us of?
• a Γ-function, except for wrong integral boundary at bottom!
• So let’s further substitute 𝑦 = 𝑥 − 𝑥0 and 𝑑𝑥 = 𝑑𝑦
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𝑘0
𝑘30

=
1

𝑠 − 1 !
w

𝑥0=
𝐸0
𝑘𝐵𝑇

∞

𝑥 𝑠−1𝑒−𝑥𝑑𝑥

• What does this function remind us of?
• a Γ-function, except for wrong integral boundary at bottom!
• So let’s further substitute 𝑦 = 𝑥 − 𝑥0 and 𝑑𝑥 = 𝑑𝑦 to get

𝑘0
𝑘30

=
𝑒−𝑥0
𝑠 − 1 !

w
0

∞

𝑦 + 𝑥0 𝑠−1	𝑒−𝑦𝑑𝑦

•What now?
•We can develop our integral as a binomial series!
• each term will then contain a Γ-function that we know how to 

solve
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𝑘0
𝑘30

=
𝑒−𝑥0
𝑠 − 1 !

w
0

∞

𝑦 + 𝑥0 𝑠−1	𝑒−𝑦𝑑𝑦

• We can develop our integral as a binomial series!
• each term will then contain a Γ-function that we know how to solve
• Binomial expansion of term 𝑦 + 𝑥0 𝑠−1 yields

𝑘1
𝑘−1

=
𝑒−𝑥0
𝑠 − 1 !

y
𝑗=0

𝑠−1
𝑠 − 1
𝑗 𝑥0

𝑠−1−𝑗w
0

∞

𝑦 𝑗𝑒−𝑦𝑑𝑦

• and we know that     = Γ 𝑗 + 1 = 𝑗! 
• 𝑘30 we know from gas-kinetic collision theory
 and rest we get from here, so mission accomplished for getting 𝑘0 !J 
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𝑘1
𝑘−1

=
𝑒−𝑥0
𝑠 − 1 !

y
𝑗=0

𝑠−1
𝑠 − 1
𝑗 𝑥0

𝑠−1−𝑗w
0

∞

𝑦 𝑗𝑒−𝑦𝑑𝑦

• For 𝑗 = 0 we get:

• For 𝑗 = 1 we get:

• What is the condition for the 2nd term and following terms to be much 
smaller than the 1st term?

• If 𝑥0 =
𝐸0
𝑘𝐵𝑇

≫ 𝑠 − 1 , then we can neglect all the terms except for the 1st 

𝐸:
𝑘_𝑇

*30

0! = 1
𝑠 − 1
0 = 1

𝐸:
𝑘_𝑇

*3'

1! = 1
𝑠 − 1
1 = 𝑠 − 1
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𝑘1
𝑘−1

=
𝑒−𝑥0
𝑠 − 1 !

y
𝑗=0

𝑠−1
𝑠 − 1
𝑗 𝑥0

𝑠−1−𝑗w
0

∞

𝑦 𝑗𝑒−𝑦𝑑𝑦

• What is the condition for the 2nd term and following terms to be much 
smaller than the 1st term?

• If 𝑥0 =
𝐸0
𝑘𝐵𝑇

≫ 𝑠 − 1 , then we can neglect all the terms except for the 1st 

• I.e., the activation energy 𝐸: must be large compared to the thermal 
energy 𝑘_𝑇 multiplied with number of oscillations 𝑠
• Meaning large 𝐸: or small number of oscillators, i.e., small molecules, 

are well suited to to justify our approximation from the start
• Then can neglect all subsequent terms of 𝑗 ≥ 1
• and are only left with the  𝑗 = 0 term overall
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𝑘1
𝑘−1

=
𝑒−𝑥0
𝑠 − 1 !

y
𝑗=0

𝑠−1
𝑠 − 1
𝑗 𝑥0

𝑠−1−𝑗w
0

∞

𝑦 𝑗𝑒−𝑦𝑑𝑦

• Within approximation, we are only left with the  𝑗 = 0 term of the 
binomial expansion to be relevant, and get:

  𝑘1
𝑘−1

= 𝑒−;<
𝑠−1 !

𝑥0𝑠−1 =
1

𝑠−1 !
𝐸0
𝑘𝐵𝑇

𝑠−1
𝑒−

𝐸0
𝑘𝐵𝑇 

• for comparison, in the beginning we wrote

         𝑘* =
+>?
,-* !

.<
+@/

,-*
𝑒-

A<
B@C 

• Good approximation for small molecules,
   medium to large activation energies, and high pressures


