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Chapter 6

Unimolecular Reaction Dynamics



* Unimolecular reaction: A" — products

* Why would we want to understand such a boring case?

* because it is simple enough to understand the mechanism on a
deeper level!

* Asterisk * : particle needs to be in an excited state (e.g., sufficiently
high vibrational energy) to react — a reactive/activated state

* We can distinguish 3 different types of unimolecular reactions based
on features of the respective potential energy surface



Potential Energy

Unimolecular reaction: A* — products

a) Isomerization b) Dissociation with
barrier for recombination

c) Dissociation without
barrier for recombination

Reaction Coordinate Reaction Coordinate

CH,NC —» CH,.N C,HCl —» HCI+CH,

Reaction Coordinate

C,H, —» 2CH,
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Unimolecular reaction: A* — products

* How does a molecule acquire enough energy to overcome the barrier to
react?

* Absorption of radiation from walls of reaction vessel (1919, Perrin)?

* ...only found to be dominant mechanism for gas molecules at very low
pressures, in absence of collisions:

* Then, predominant dissociation mechanism is indeed absorption of a
large number of IR photons originating from black-body radiation of walls
of container

 But what about at moderate pressures?
* Dependence of reaction rate on pressure found (contradicts Perrin!)

* also, no dependence found on surface-to-volume-ration of container or
presence of absorbers (contradicts Perrin!)

- instead this suggests that molecules are activated by collisions -



6.1 Lindemann-Hinshelwood Theory
of unimolecular reactions

Lindemann proposed 1922 we need a collision partner M to
activate/deactivate A : "
1

A+M - A"+ M

k_q
A+M - A+ M

ks
A* — products

* What does this scheme remind you of?



k1
A+M > A"+ M

k_q
» Let’s apply the steady-state approximation to A* A+M > A+ M

* We make an additional approx. here: A iz roducts
* we assume every collision of A" + M fully deactivates A" to A
* so called: strong collision assumption

* How to calculate k_, for deactivation rate?
* could use gas-kinetic collision rate z5p\ we derived before

ZAM = 0AM (uam) papm = k-1 [Al[M]

 Now we just need to find also k; and k,, let’s do it!



e Let’s apply the steady-state approximation to A™
* We get for the overall rate R of the reaction:

_ _ 1 _ kika[A][M]
R = kuni [A] — k2 [A ] — k_l[M]+k2
Limiting cases:
A) Low pressure limit:
 at low pressure: IM] - 0 and

Kyni = ko = k1[M]
* here, collision activation is rate-limiting step
* k,.,; grows linearly with pressure

k1
A+M > A"+ M

A* — products
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e Let’s apply the steady-state approximation to A™
* We get for the overall rate R of the reaction:

R = kyn; [A] = k,[A*] = ’;1_112[1[\%]9\’:[2]
Limiting cases:
B) High pressure limit:
* at high pressure: IM] - o0 and
kunt = ke = 7

* now k,,,; becomes independent of pressure

* reversible first step, so here we have a pre-equilibrium

k_q
A+M - A+ M

ka
A* — products
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* A useful way of plotting is the log-log Lindemann plot

: Koo cis/trans isomerization of 2-butene at 496 °C
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A+M > A"+ M

k_q
A+M - A+ M

ka
A* — products
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* What’s the best model we got so far to calculate

rate constants like k; and k,? A+M > A+M

ka
A* — products

* Reactive-hard-spheres model:
E*
ki =k(T) =oam{uam) v e *87

from gas-kinetic collision rate we got o o (uanm) = ko1
E*
sowithp = 1 follows k; = k_; e *BT

* But experimentally we find this underestimates the rates measured!!! Why?

—->molecules also have internal energy stored, e.g., vibrational, that can be
used to drive the reaction, not just Ey;, "



Hinshelwood Theory

* accounts for internal energy that is stored in vibrational degrees of
freedom, which should lead to a higher activation rate k,
Eo

s—1 _ =0
* hederived in 1926:  k; = (:—11)' (kEOT) e ksT
“ 1)1 \kg

e ¢ : number of vibrational degrees of freedom/| To get an idea of the activation energy and limit
for which the approximation holds:

* How many are there for a given molecule? | Tobreak C-Cbond in ethane: Ey =~ 400 ki/mol
] ] and kgT atr.t. = 2.5 klJ/mol
e 3N —6 (or 3N — 5, if molecule linear) - 5 < 160 here for the above Eq. to work

* What happens if s isincreased (e.g., bigger molecule, rest same)?
* More energy stored, so rate goes up

* but only holds under assumption oka—OT >> s (uses an approximation)

B
14



Hinshelwood Theory

A*
. [[A]] Is fraction of molecules exceeding activation energy

e Ratio —
-1

E, in thermal equilibrium

* Good approximation at high pressure [M]| — oo where energized
molecules in pre-equilibrium with ground-state ones

* We also assume it holds at low pressures for now, by making again a
strong collision assumption (this time for energizing collisions)

* assumes no step-wise activation, but that one collision instantly
excites/de-excited fully (drastic assumption at low pressure)

[A*] [A(E>E()] How to calculate
k —1 [A] [Atotall this fraction?

* Then we can say:

15



* We assume everything is in equilibrium and therefore can use
statistical thermodynamics (quasi-equilibrium, but close enough, at
least for high pressures)

* Remember: we are right now historically before quantum-mechanics,
so continuous rather than discrete energy levels (and not the QM
partition function, but classical oscillator one needed)

* SO0 now we look at classical analogues for what you learned before in
QM for discrete energy states

* Sum of states G(E) : # of levels with energies smaller than or equalto E

* How did this look for the quantum-mechanical oscillator?

16



Sum of states G(E) : # of levels with energies smaller than or equal to E
* How did this look for the quantum-mechanical oscillator?

. 1

* discrete energy levels £ = (v + E) hv; G(E)
* v; . eigenfrequency of oscillator /(
« Sum of states classically. G(E) = % 2 S
* Density of states (DoS) N(E) is number of 1 //

levels per unit energy:

N(E) = diéE) which is simply 1 3§ F

) Ehvi Ehvi Ehvi

* Probability for such an oscillator to have energy between E and E + dE ?
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Probability for such an oscillator to have energy between E and E + dFE

follows Boltzmann statistics and is thus:
E

— E
+ P(E)dE =B PAE _ Ty G(E)

;" N(E)e *BTdE /(
\ ) 2 /

partition function for one classical oscillator 1 /

* Now need to generalize to 3N — 6 (ors) /
oscillators, that have a total energy E . E
1 3 5
* For 1 oscillator, we had found N(E) = % —hvl- —hvi Ehvi
1
. E dE1
and for the sum of states G(E) = hv1 —- (i.e., the integral [ ~— hv1

* What is the sum of states for s oscillators then? .



* For s oscillators of energies E; with };;_{ E; = E we then find for the sum
of states:

. _ (EdEy (E-EidE, E—E1— ..—Eg_1 dEg
G(E) = fO hvq f ' fO hvg

* as for more than one oscillator, those oscillators share the energy
between them

hVZ

* S0, if the first oscillator has already energy E;, then the second one can
only have at most E' — E; , and so on

e We can rewrite this to

E-E E-E{— ..—E._
- G(E) = delf YdE, L) "dE,

HS 1hvl
* which after some further steps becomes

ES
G(E) ~ s! Hl$=1 hvi
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* For s oscillators of energies E; with };;_{ E; = E we then find for the sum
of states:

ES
G(E) - s! Hle hvi
* and for the DoS we then find:
Es—1 L N
N(E) = DT (which is just the derivative)

* With this we can now calculate our probability following Boltzmann

statistics, inserting our solution for N(E):
E E

“kpT s—1, kpT s—1 __&
P(E)dE= N(E)e BEdE _ _ETe BEdE 1 (E) 0 kBT(d_E)

o _E o —E o (s=1)! \kpT
o N(Ede *BTdE [~ Es—le *BTdE (s=1)

J, x5 te ™ dx =T(s) = (s — 1)!
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Now we know the probability for a molecule with s classical harmonic

oscillations having a certain energy E':
E

PEIE = 25 (i) e (i)

* Let’s plot this for different s at room temperature (s = 1 case is easy):

0.4
0.3f

0.2f

P(E) (mol/kJ)

0.1f

0.0t
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Probability for a molecule with s classical harmonic oscillations having a

certain energy E':
E

P(E)dE = (5_11)! (kiT)S—l e toT (kdBET)

* back to deriving k; according to Hinshelwood:

* We derive k, from fraction of molecules with energy exceeding activation
energy E, through integration:
o o S—l

kk__11 - f P(E)AE = Ef (s —1 D! (ka) o (li_ET)

Eg
* How can we solve this integral?

. N E
* by transforming and substituting x = —
B
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00

b [ peerae - f S )— (2

Eg
* How can we solve this mtegral?

. " E
* by transforming and substituting x = - We get
B

Ky

k__l_ S_1)| f (X)S lo=xdx

X0~ kBT
e \What does this function remind us of?

* a I'-function, except for wrong integral boundary at bottom!
* So let’s further substitute y = x — xp and dx = dy

)

23



Ky

ety | e

X0~ kBT
e \What does this function remind us of?

* a I'-function, except for wrong integral boundary at bottom!

* So let’s further substitute y = x — xy and dx = dy to get

k4 ,

- S— -y

. (= 1),f(3’+x0) e Vdy
0| J

 What now? !

* We can develop our integral as a binomial series!

e cach term will then contain a I'-function that we know how to

solve
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k1 s—1
—_— = -y
k. (S e f (v + 3:0) e Vdy

* We can develop our integral as a binomial series!
 each term will then contain a I'-function that we know how to solve
* Binomial expansion of term (y + x)5~ ! yields

 and we know that =T(G+1) =]
* k_; we know from gas-kinetic collision theory
and rest we get from here, so mission accomplished for getting k, !©
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: — E
* Forj = 0 we get: s—1 =1 (_0) | —
(-1 BT
S—1 E S—2
- Forj = 1 we get: (F77)=s-1 (k—"T) =1
B

* What is the condition for the 2" term and following terms to be much

smaller than the 1stterm?
E
* If xg = k—OT > s — 1, thenwe can neglect all the terms except for the 15t
B
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k1 e_xo S—l S—].—j .
o _ jo—y
k_ (5—1)!2( J )xo fye dy

j=0 0
* What is the condition for the 2" term and following terms to be much
smaller than the 1stterm?
Eg

* Ifxy = PRt i 1, then we can neglect all the terms except for the 15t
B

* |.e., the activation energy E, must be large compared to the thermal
energy kzT multiplied with number of oscillations s

* Meaning large E, or small number of oscillators, i.e., small molecules,
are well suited to to justify our approximation from the start

* Then can neglect all subsequenttermsofj =1
* and are only left with the j = 0 term overall
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Jj=0

* Within approximation, we are only left with the j = 0 term of the

binomial expansion to be relevant, and get:

_ -1 _fEo
Ky _ 770 w5~ = 1 (EO )S o kpT
k_y (s—1n70 (s—1)! \kgT
* for comparison, in the beginning we wrote
s—1 __Eo
o k_l(Eo) o kgT
L™ (s=)! \kpT

* Good approximation for small molecules,
medium to large activation energies, and high pressures

k1 e_xo S — 1 S—].—j r .
— . Je = Vd
ey ) e
0
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