Kinetics & Dynamics of Chemical Reactions

Course CH-310

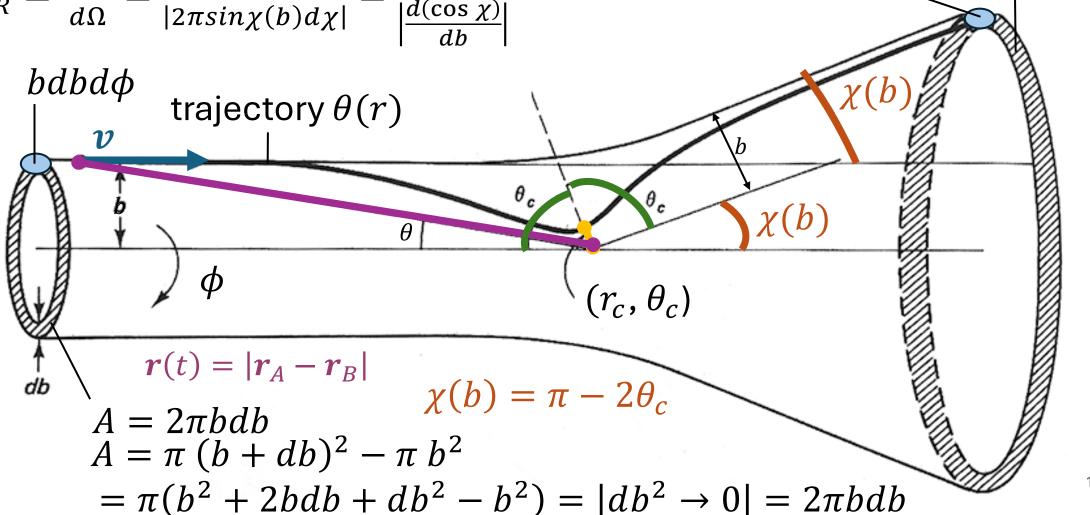
Prof. Sascha Feldmann

Recap from last session

2-body classical scattering

$$I_R = rac{d\sigma_R}{d\Omega} = rac{2\pi b db}{|2\pi sin\chi(b)d\chi|} = rac{b}{|rac{d(\cos\chi)}{db}|}$$

$$bdbd\phi$$
trajectory $heta(r)$



 $A' = 2\pi \sin \chi d\chi$

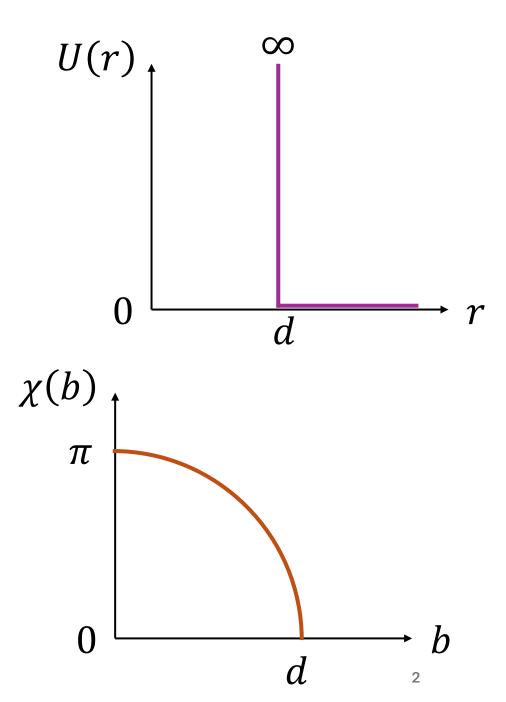
 $d\Omega = \sin\chi d\chi d\phi$

Recap from last session

2-body classical scattering

$$I_R = \frac{d\sigma_R}{d\Omega} = \frac{2\pi b db}{|2\pi \sin \chi(b) d\chi|} = \frac{b}{\left|\frac{d(\cos \chi)}{db}\right|}$$

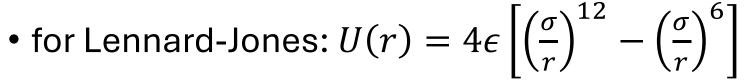
- for hard spheres: $U(r) = \begin{cases} 0 & (r > d) \\ \infty & (r \le d) \end{cases}$ $\chi(E,b) = 2\arccos\frac{b}{d}$ $I_R(E,\chi) = \frac{d^2}{4}$



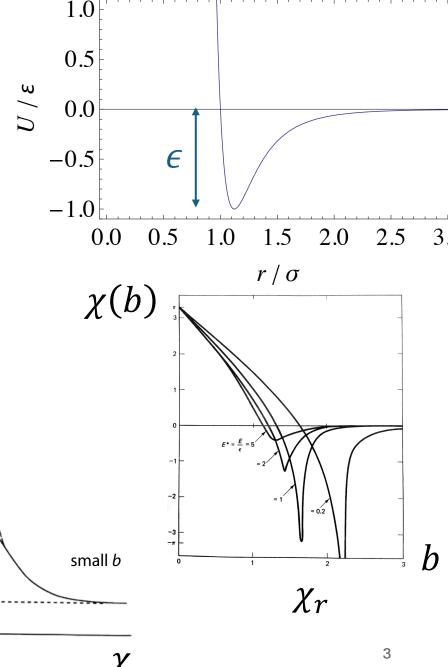
Recap from last session

2-body classical scattering

$$I_R = \frac{d\sigma_R}{d\Omega} = \frac{2\pi b db}{|2\pi \sin \chi(b) d\chi|} = \frac{b}{\left|\frac{d(\cos \chi)}{db}\right|}$$



• χ_r rainbow angle



Chapter 6

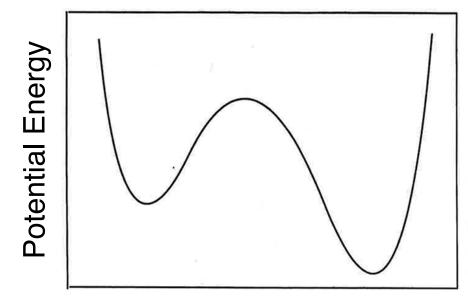
Unimolecular Reaction Dynamics

• Unimolecular reaction: $A^* \rightarrow products$

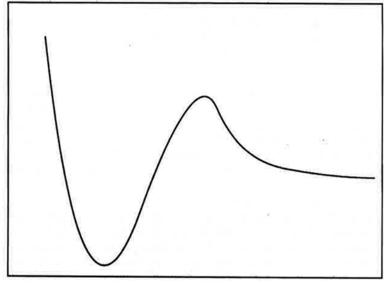
- Why would we want to understand such a boring case?
- because it is simple enough to understand the mechanism on a deeper level!
- Asterisk * : particle needs to be in an excited state (e.g., sufficiently high vibrational energy) to react – a reactive/activated state
- We can distinguish 3 different types of unimolecular reactions based on features of the respective potential energy surface

Unimolecular reaction: $A^* \rightarrow products$

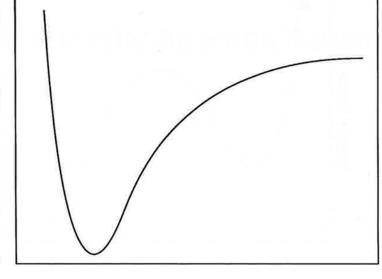
a) Isomerization



b) Dissociation with barrier for recombination



c) Dissociation without barrier for recombination



Reaction Coordinate

Reaction Coordinate

Reaction Coordinate

$$C_2H_5CI \longrightarrow HCI + C_2H_4$$

$$C_2H_6 \rightarrow 2CH_3$$

Unimolecular reaction: $A^* \rightarrow products$

- How does a molecule acquire enough energy to overcome the barrier to react?
- Absorption of radiation from walls of reaction vessel (1919, Perrin)?
- ... only found to be dominant mechanism for gas molecules at very low pressures, in absence of collisions:
- Then, predominant dissociation mechanism is indeed absorption of a large number of IR photons originating from black-body radiation of walls of container
- But what about at moderate pressures?
- Dependence of reaction rate on pressure found (contradicts Perrin!)
- also, no dependence found on surface-to-volume-ration of container or presence of absorbers (contradicts Perrin!)
- instead this suggests that molecules are activated by collisions

6.1 Lindemann-Hinshelwood Theory of unimolecular reactions

Lindemann proposed 1922 we need a collision partner M to activate/deactivate A:

$$A + M \rightarrow A^* + M$$

$$A^* + M \rightarrow A + M$$

$$k_2$$
 $A^* \rightarrow \text{products}$

What does this scheme remind you of?

$$A + M \rightarrow A^* + M$$

$$\mathbf{A}^* + \mathbf{M} \xrightarrow{k_{-1}} \mathbf{A} + \mathbf{M}$$

$$k_2$$
 $A^* \rightarrow \text{products}$

- Let's apply the steady-state approximation to A*
- We make an additional approx. here:
 - we assume every collision of $A^* + M$ fully deactivates A^* to A
 - so called: **strong collision assumption**
- How to calculate k_{-1} for deactivation rate?
- could use gas-kinetic collision rate z_{AM} we derived before

$$z_{\text{AM}} = \sigma_{\text{AM}} \langle u_{\text{AM}} \rangle \rho_{\text{A}} \rho_{\text{M}} = k_{-1} [A][M]$$

• Now we just need to find also k_1 and k_2 , let's do it!

$$A + M \xrightarrow{k_1} A^* + M$$

$$\mathbf{A}^* + \mathbf{M} \xrightarrow{k_{-1}} \mathbf{A} + \mathbf{M}$$

$$k_2$$
 $A^* \rightarrow \text{products}$

- Let's apply the steady-state approximation to A*
- We get for the overall rate R of the reaction:

$$R = k_{uni}[A] = k_2[A^*] = \frac{k_1 k_2[A][M]}{k_{-1}[M] + k_2}$$

Limiting cases:

- A) Low pressure limit:
- at low pressure: $[M] \rightarrow 0 \text{ and}$ $k_{uni} = k_0 = k_1 [M]$
- here, collision activation is rate-limiting step
- k_{uni} grows linearly with pressure

$$\begin{array}{c} k_1 \\ A + M \rightarrow A^* + M \end{array}$$

$$ullet$$
 Let's apply the steady-state approximation to A^{st}

We get for the overall rate R of the reaction:

$$R = k_{uni}[A] = k_2[A^*] = \frac{k_1 k_2[A][M]}{k_{-1}[M] + k_2}$$

Limiting cases:

B) High pressure limit:

• at high pressure: $[M] \rightarrow \infty$ and

$$k_{uni} = k_{\infty} = \frac{k_1 k_2}{k_{-1}}$$

- now k_{uni} becomes independent of pressure
- reversible first step, so here we have a pre-equilibrium $\frac{[A^*]}{[A]} = \frac{k_1}{k_{-1}}$

$$A + M \xrightarrow{k_1} A^* + M$$

$$k_{-1}$$

$$A^* + M \xrightarrow{k_2} A + M$$

$$k_2$$

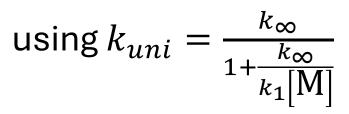
$$A^* \xrightarrow{} \text{products}$$

• A useful way of plotting is the log-log *Lindemann plot*

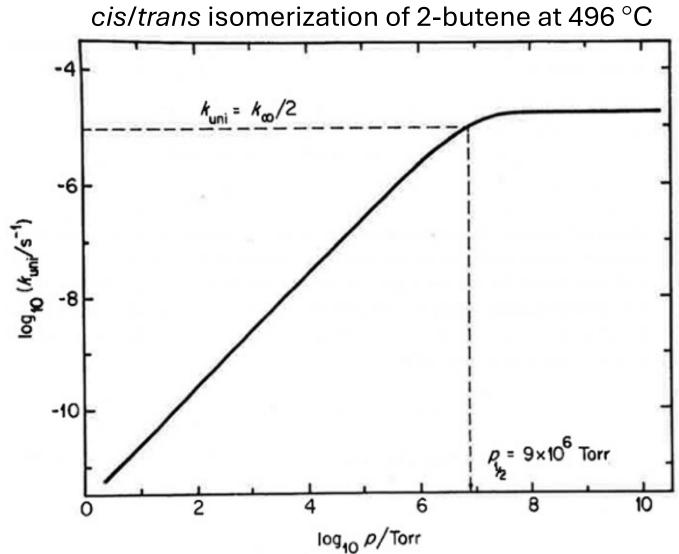
$$\begin{array}{c} k_1 \\ A + M \rightarrow A^* + M \end{array}$$

$$A^* + M \xrightarrow{k_{-1}} A + M$$

$$k_2$$
 $A^* \rightarrow \text{products}$



• $p_{\frac{1}{2}} \propto [M]_{\frac{1}{2}} = \frac{k_{\infty}}{k_1}$ with $\frac{k_{uni}}{k_{\infty}} = \frac{1}{2}$



- What's the best model we got so far to calculate rate constants like k_1 and k_2 ?
- Reactive-hard-spheres model:

$$k_1 = k(T) = \sigma_{\text{AM}} \langle u_{\text{AM}} \rangle p \ e^{-\frac{E^*}{k_B T}}$$

from gas-kinetic collision rate we got $\sigma_{\rm AM}$ $\langle u_{\rm AM} \rangle = {\bf k}_{-1}$ so with p=1 follows $k_1=k_{-1}$ $e^{-\frac{E^*}{k_BT}}$

- But experimentally we find this *underestimates* the rates measured!!! Why?
- \rightarrow molecules also have internal energy stored, e.g., vibrational, that can be used to drive the reaction, not just E_{kin}

 $\begin{array}{c} k_1 \\ A + M \xrightarrow{} A^* + M \\ \\ A^* + M \xrightarrow{} A + M \\ \\ k_2 \\ A^* \xrightarrow{} \text{products} \end{array}$

Hinshelwood Theory

- accounts for internal energy that is stored in vibrational degrees of freedom, which should lead to a higher activation rate $\,k_1\,$
- he derived in 1926: $k_1 = \frac{k_{-1}}{(s-1)!} \left(\frac{E_0}{k_B T}\right)^{s-1} e^{-\frac{E_0}{k_B T}}$

- s : number of vibrational degrees of freedom
- How many are there for a given molecule?
- 3N 6 (or 3N 5, if molecule linear)

To get an idea of the activation energy and limit for which the approximation holds:

To break C-C bond in ethane: $E_0 \approx 400$ kJ/mol and k_BT at r.t. ≈ 2.5 kJ/mol

 \rightarrow s \ll 160 here for the above Eq. to work

- What happens if s is increased (e.g., bigger molecule, rest same)?
- More energy stored, so rate goes up
- but only holds under assumption of $\frac{E_0}{k_BT}\gg s$ (uses an approximation)

Hinshelwood Theory

- Ratio $\frac{k_1}{k_{-1}} = \frac{[A^*]}{[A]}$ is fraction of molecules exceeding activation energy E_0 in thermal equilibrium
- Good approximation at high pressure [M] → ∞ where energized molecules in pre-equilibrium with ground-state ones
- We also assume it holds at *low* pressures for now, by making again a *strong collision assumption* (this time for energizing collisions)
- assumes no step-wise activation, but that one collision instantly excites/de-excited fully (drastic assumption at low pressure)

• Then we can say:
$$\frac{k_1}{k_{-1}} = \frac{[A^*]}{[A]} \approx \frac{[A(E>E_0)]}{[A_{total}]}$$
 How to calculate this fraction?

- We assume everything is in equilibrium and therefore can use statistical thermodynamics (quasi-equilibrium, but close enough, at least for high pressures)
- Remember: we are right now historically before quantum-mechanics, so continuous rather than discrete energy levels (and not the QM partition function, but classical oscillator one needed)
- So now we look at classical analogues for what you learned before in QM for discrete energy states

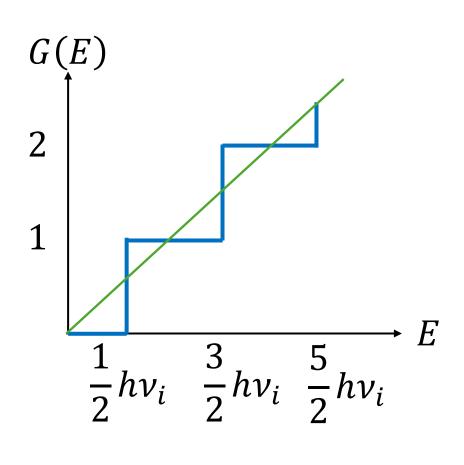
• Sum of states G(E): # of levels with energies smaller than or equal to E

How did this look for the quantum-mechanical oscillator?

Sum of states G(E): # of levels with energies smaller than or equal to E

- How did this look for the quantum-mechanical oscillator?
- discrete energy levels $E = \left(v + \frac{1}{2}\right)hv_i$
- v_i : eigenfrequency of oscillator
- Sum of states *classically*: $G(E) = \frac{E}{h\nu_i}$
- Density of states (DoS) N(E) is number of levels per unit energy:

$$N(E) = \frac{dG(E)}{dE}$$
 which is simply $N(E) = \frac{1}{hv_i}$



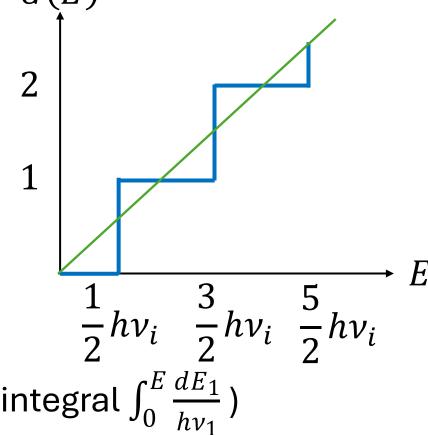
• Probability for such an oscillator to have energy between E and E + dE?

Probability for such an oscillator to have energy between E and E+dE follows Boltzmann statistics and is thus:

•
$$P(E)dE = \frac{N(E)e^{-\frac{E}{k_BT}}dE}{\int_0^\infty N(E)e^{-\frac{E}{k_BT}}dE} = e^{-\frac{E}{k_BT}}dE$$

partition function for one classical oscillator

- Now need to generalize to 3N-6 (or s) oscillators, that have a total energy E
- For 1 oscillator, we had found $N(E) = \frac{1}{h\nu_1}$



- and for the sum of states $G(E) = \frac{E_1}{h\nu_1}$ (i.e., the integral $\int_0^E \frac{dE_1}{h\nu_1}$)
- What is the sum of states for s oscillators then?

• For s oscillators of energies E_i with $\sum_{i=1}^s E_i = E$ we then find for the sum of states:

•
$$G(E) = \int_0^E \frac{dE_1}{h\nu_1} \int_0^{E-E_1} \frac{dE_2}{h\nu_2} \dots \int_0^{E-E_1-\dots-E_{s-1}} \frac{dE_s}{h\nu_s}$$

- as for more than one oscillator, those oscillators share the energy between them
- So, if the first oscillator has already energy E_1 , then the second one can only have at most $E-E_1$, and so on
- We can rewrite this to

•
$$G(E) = \frac{1}{\prod_{i=1}^{S} h\nu_i} \int_0^E dE_1 \int_0^{E-E_1} dE_2 \dots \int_0^{E-E_1-\dots-E_{S-1}} dE_S$$

which after some further steps becomes

$$G(E) = \frac{E^{S}}{s! \prod_{i=1}^{S} h \nu_{i}}$$

• For s oscillators of energies E_i with $\sum_{i=1}^s E_i = E$ we then find for the sum of states:

$$G(E) = \frac{E^{s}}{s! \prod_{i=1}^{s} h\nu_{i}}$$

and for the DoS we then find:

$$N(E) = \frac{E^{S-1}}{(s-1)! \prod_{i=1}^{S} h\nu_i}$$
 (which is just the derivative)

• With this we can now calculate our probability following Boltzmann statistics, inserting our solution for N(E):

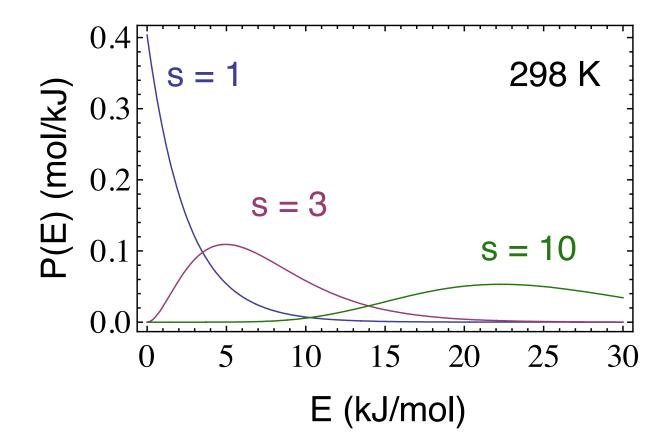
$$P(E)dE = \frac{N(E)e^{-\frac{E}{k_BT}}dE}{\int_0^\infty N(E)e^{-\frac{E}{k_BT}}dE} = \frac{E^{s-1}e^{-\frac{E}{k_BT}}dE}{\int_0^\infty E^{s-1}e^{-\frac{E}{k_BT}}dE} = \frac{1}{(s-1)!} \left(\frac{E}{k_BT}\right)^{s-1} e^{-\frac{E}{k_BT}} \left(\frac{dE}{k_BT}\right)$$

$$\int_0^\infty x^{s-1} e^{-x} dx = \Gamma(s) = (s-1)!$$

Now we know the probability for a molecule with s classical harmonic oscillations having a certain energy E:

$$P(E)dE = \frac{1}{(s-1)!} \left(\frac{E}{k_B T}\right)^{s-1} e^{-\frac{E}{k_B T}} \left(\frac{dE}{k_B T}\right)$$

• Let's plot this for different s at room temperature (s = 1 case is easy):



Probability for a molecule with s classical harmonic oscillations having a certain energy E:

$$P(E)dE = \frac{1}{(s-1)!} \left(\frac{E}{k_B T}\right)^{s-1} e^{-\frac{E}{k_B T}} \left(\frac{dE}{k_B T}\right)$$

- back to deriving k_1 according to Hinshelwood:
- We derive k_1 from fraction of molecules with energy exceeding activation energy E_0 through integration:

$$\frac{k_1}{k_{-1}} = \int_{E_0}^{\infty} P(E)dE = \int_{E_0}^{\infty} \frac{1}{(s-1)!} \left(\frac{E}{k_B T}\right)^{s-1} e^{-\frac{E}{k_B T}} \left(\frac{dE}{k_B T}\right)$$

- How can we solve this integral?
- by transforming and substituting $x = \frac{E}{k_B T}$

$$\frac{k_1}{k_{-1}} = \int_{E_0}^{\infty} P(E)dE = \int_{E_0}^{\infty} \frac{1}{(s-1)!} \left(\frac{E}{k_B T}\right)^{s-1} e^{-\frac{E}{k_B T}} \left(\frac{dE}{k_B T}\right)$$

- How can we solve this integral?
- by transforming and substituting $x = \frac{E}{k_B T}$ we get

$$\frac{k_1}{k_{-1}} = \frac{1}{(s-1)!} \int_{x_0 = \frac{E_0}{k_B T}}^{\infty} (x)^{s-1} e^{-x} dx$$

- What does this function remind us of?
- a Γ -function, except for wrong integral boundary at bottom!
- So let's further substitute $y = x x_0$ and dx = dy

$$\frac{k_1}{k_{-1}} = \frac{1}{(s-1)!} \int_{x_0 = \frac{E_0}{k_B T}}^{\infty} (x)^{s-1} e^{-x} dx$$

- What does this function remind us of?
- a Γ -function, except for wrong integral boundary at bottom!
- So let's further substitute $y = x x_0$ and dx = dy to get

$$\frac{k_1}{k_{-1}} = \frac{e^{-x_0}}{(s-1)!} \int_0^\infty (y+x_0)^{s-1} e^{-y} dy$$

- What now?
- We can develop our integral as a binomial series!
- each term will then contain a $\,\Gamma\text{-function}$ that we know how to solve

$$\frac{k_1}{k_{-1}} = \frac{e^{-x_0}}{(s-1)!} \int_0^\infty (y+x_0)^{s-1} e^{-y} dy$$

- We can develop our integral as a binomial series!
- each term will then contain a Γ -function that we know how to solve
- Binomial expansion of term $(y + x_0)^{s-1}$ yields

$$\frac{k_1}{k_{-1}} = \frac{e^{-x_0}}{(s-1)!} \sum_{j=0}^{s-1} {s-1 \choose j} x_0^{s-1-j} \int_0^\infty y^j e^{-y} dy$$

and we know that

- $= \Gamma(j+1) = j!$
- k_{-1} we know from gas-kinetic collision theory and rest we get from here, so mission accomplished for getting k_1 ! \odot

$$\frac{k_1}{k_{-1}} = \frac{e^{-x_0}}{(s-1)!} \sum_{j=0}^{s-1} {s-1 \choose j} x_0^{s-1-j} \int_0^\infty y^j e^{-y} dy$$
e get:
$${s-1 \choose 0} = 1 \qquad \left(\frac{E_0}{k_{-1}}\right)^{s-1} \qquad 0! = 1$$

• For j = 0 we get:

ve get:
$$\binom{s-1}{1} = s-1$$
 $(\frac{E_0}{k-T})^{s-2}$ $1! = 1$

- For j = 1 we get:
- What is the condition for the 2nd term and following terms to be much smaller than the 1st term?
- If $x_0 = \frac{E_0}{k_B T} \gg s 1$, then we can neglect all the terms except for the 1st

$$\frac{k_1}{k_{-1}} = \frac{e^{-x_0}}{(s-1)!} \sum_{j=0}^{s-1} {s-1 \choose j} x_0^{s-1-j} \int_0^\infty y^j e^{-y} dy$$

- What is the condition for the 2nd term and following terms to be much smaller than the 1st term?
- If $x_0 = \frac{E_0}{k_B T} \gg s 1$, then we can neglect all the terms except for the 1st
- I.e., the activation energy E_0 must be large compared to the thermal energy k_BT multiplied with number of oscillations s
- Meaning large E_0 or small number of oscillators, i.e., small molecules, are well suited to to justify our approximation from the start
- Then can neglect all subsequent terms of $j \geq 1$
- and are only left with the j=0 term overall

$$\frac{k_1}{k_{-1}} = \frac{e^{-x_0}}{(s-1)!} \sum_{j=0}^{s-1} {s-1 \choose j} x_0^{s-1-j} \int_0^\infty y^j e^{-y} dy$$

• Within approximation, we are only left with the j=0 term of the binomial expansion to be relevant, and get:

$$\frac{k_1}{k_{-1}} = \frac{e^{-x_0}}{(s-1)!} x_0^{s-1} = \frac{1}{(s-1)!} \left(\frac{E_0}{k_B T}\right)^{s-1} e^{-\frac{E_0}{k_B T}}$$

• for comparison, in the beginning we wrote

$$k_1 = \frac{k_{-1}}{(s-1)!} \left(\frac{E_0}{k_B T}\right)^{s-1} e^{-\frac{E_0}{k_B T}}$$

Good approximation for small molecules,
 medium to large activation energies, and high pressures